1,040 research outputs found

    Pifithrin-alpha inhibits p53 signaling after interaction of the tumor suppressor protein with hsp90 and its nuclear translocation

    Get PDF
    Pifithrin-alpha (PFTalpha) was originally thought to be a specific inhibitor of signaling by the tumor suppressor protein p53. However, the laboratory that discovered pifithrin recently reported that the compound also inhibits heat shock and glucocorticoid receptor (GR) signaling, and they suggested that PFTalpha targets a factor common to all three signal transduction pathways, such as the hsp90/hsp70-based chaperone machinery (Komarova, E. A., Neznanov, N., Komarov, P. G., Chernov, M. V., Wang, K., and Gudkov, A. V. (2003) J. Biol. Chem. 278, 15465-15468). Because it is important for the mechanistic study of this machinery to identify unique inhibitors of chaperone action, we have examined the effect of PFTalpha on transcriptional activation, the hsp90 heterocomplex assembly, and hsp90-dependent nuclear translocation for both p53 and the GR. At concentrations where PFTalpha blocks p53-mediated induction of p21/Waf-1 in human embryonic kidney cells, we observed no inhibition of GR-mediated induction of a chloramphenicol acetyl transferase reporter in LMCAT cells. PFTalpha did, however, cause a left shift in the dexamethasone dose response curve by increasing intracellular dexamethasone concentration, apparently by competing for dexamethasone efflux from the cell. The assembly of p53 or GR heterocomplexes with hsp90 and immunophilins was not affected by PFTalpha either in vivo or in vitro and did not affect the nuclear translocation of either transcription factor. Thus, we conclude that PFTalpha does not inhibit GR-mediated induction or the function of the chaperone machinery, and, as originally thought, it may specifically inhibit p53 signaling by acting at a stage after p53 translocation to the nucleus.Fil: Murphy, Patrick J.. University of Michigan; Estados UnidosFil: Galigniana, Mario Daniel. University of Michigan; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morishima, Yoshihiro. University of Michigan; Estados UnidosFil: Harrell, Jennifer M.. University of Michigan; Estados UnidosFil: Kwok, Roland P.. University of Michigan; Estados UnidosFil: Ljungman, Mats. University of Michigan; Estados UnidosFil: Pratt, William B.. University of Michigan; Estados Unido

    Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic cancer is characterized by nearly universal activating mutations in KRAS. Among other somatic mutations, TP53 is mutated in more than 75% of human pancreatic tumors. Genetically engineered mice have proven instrumental in studies of the contribution of individual genes to carcinogenesis. Oncogenic Kras mutations occur early during pancreatic carcinogenesis and are considered an initiating event. In contrast, mutations in p53 occur later during tumor progression. In our model, we recapitulated the order of mutations of the human disease, with p53 mutation following expression of oncogenic Kras. Further, using an inducible and reversible expression allele for mutant p53, we inactivated its expression at different stages of carcinogenesis. Notably, the function of mutant p53 changes at different stages of carcinogenesis. Our work establishes a requirement for mutant p53 for the formation and maintenance of pancreatic cancer precursor lesions. In tumors, mutant p53 becomes dispensable for growth. However, it maintains the altered metabolism that characterizes pancreatic cancer and mediates its malignant potential. Further, mutant p53 promotes epithelial-mesenchymal transition (EMT) and cancer cell invasion. This work generates new mouse models that mimic human pancreatic cancer and expands our understanding of the role of p53 mutation, common in the majority of human malignancies

    Viral Findings in Adult Hematological Patients with Neutropenia

    Get PDF
    BACKGROUND: Until recently, viral infections in patients with hematological malignancies were concerns primarily in allogeneic hematopoietic stem cell transplant (HSCT) recipients. During the last years, changed treatment regimens for non-transplanted patients with hematological malignancies have had potential to increase the incidence of viral infections in this group. In this study, we have prospectively investigated the prevalence of a broad range of respiratory viruses in nasopharyngeal aspirate (NPA) as well as viruses that commonly reactivate after allogeneic HSCT. METHODOLOGY/PRINCIPAL FINDINGS: Patients with hematological malignancies and therapy induced neutropenia (n = 159) were screened regarding a broad range of common respiratory viruses in the nasopharynx and for viruses commonly detected in severely immunosuppressed patients in peripheral blood. Quantitative PCR was used for detection of viruses. A viral pathogen was detected in 35% of the patients. The detection rate was rather similar in blood (22%) and NPA (18%) with polyoma BK virus and rhinovirus as dominating pathogens in blood and NPA, respectively. Patients with chronic lymphocytic leukemia (CLL) (p<0.01) and patients with fever (p<0.001) were overrepresented in the virus-positive group. Furthermore, viral findings in NPA were associated with upper respiratory symptoms (URTS) (p<0.0001). CONCLUSIONS/SIGNIFICANCE: Both respiratory viral infections and low titers of viruses in blood from patients with neutropenia were common. Patients with CLL and patients with fever were independently associated to these infections, and viral findings in NPA were associated to URTS indicating active infection. These findings motivate further studies on viruses' impact on this patient category and their potential role as causative agents of fever during neutropenia

    Dominance of variant A in Human Herpesvirus 6 viraemia after renal transplantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human herpesvirus 6 (HHV-6), mostly variant B reactivation in renal transplant patients has been published by other authors, but the pathogenetic role of HHV-6 variant A has not been clarified. Our aims were to examine the prevalence of HHV-6, to determine the variants, and to investigate the interaction between HHV-6 viraemia, human cytomegalovirus (HCMV) infection and clinical symptoms.</p> <p>Methods</p> <p>Variant-specific HHV-6 nested PCR and quantitative real-time PCR were used to examine blood samples from renal transplant patients and healthy blood donors for the presence and load of HHV-6 DNA and to determine the variants. Active HHV-6 infection was proved by RT-PCR, and active HCMV infection was diagnosed by pp65 antigenaemia test.</p> <p>Results</p> <p>HHV-6 viraemia was significantly more frequent in renal transplant patients compared to healthy blood donors (9/200 vs. 0/200; p = 0.004), while prevalence of HHV-6 latency was not significantly different (13/200 vs. 19/200; p > 0.05). Dominance of variant A was revealed in viraemias (8/9), and the frequency of HHV-6A was significantly higher in active infections compared with latency in renal transplant patients (8/9 vs. 2/13; p = 0.0015). Latency was established predominantly by HHV-6B both in renal transplant patients and in healthy blood donors (11/13 and 18/19). There was no statistical significant difference in occurrence of HCMV and HHV-6 viraemia in renal transplant patients (7/200 vs. 9/200). Statistical analysis did not reveal interaction between HHV-6 viraemia and clinical symptoms in our study.</p> <p>Conclusions</p> <p>Contrary to previous publications HHV-6A viraemia was found to be predominant in renal transplant patients. Frequency of variant A was significantly higher in cases of active infection then in latency.</p

    Humoral and Cellular CMV Responses in Healthy Donors; Identification of a Frequent Population of CMV-Specific, CD4+ T Cells in Seronegative Donors

    Get PDF
    CMV status is an important risk factor in immune compromised patients. In hematopoeitic cell transplantations (HCT), both donor and recipient are tested routinely for CMV status by serological assays; however, one might argue that it might also be of relevance to examine CMV status by cellular (i.e., T lymphocyte) assays. Here, we have analyzed the CMV status of 100 healthy blood bank donors using both serology and cellular assays. About half (56%) were found to be CMV seropositive, and they all mounted strong CD8+ and/or moderate CD4+ T cell responses ex vivo against the immunodominant CMV protein, pp65. Of the 44 seronegative donors, only five (11%) mounted ex vivo T cell responses; surprisingly, 33 (75%) mounted strong CD4+ T cell responses after a brief in vitro peptide stimulation culture. This may have significant implications for the analysis and selection of HCT donors
    corecore